
An alternative view on quasicrystalline random tilings

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 8823

(http://iopscience.iop.org/0305-4470/32/50/304)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 07:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/50
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 8823–8829. Printed in the UK PII: S0305-4470(99)06183-1

An alternative view on quasicrystalline random tilings

Christoph Richard
Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria
3052, Australia

Received 20 July 1999

Abstract. We apply a framework for the description of random tilings without height
representation, which was proposed recently, to the special case of quasicrystalline random tilings.
Two important examples are discussed, thereby demonstrating the consistency of this alternative
description with the conventional one. We also clarify the latter by deriving a group theoretic
criterion for the validity of the first random tiling hypothesis.

1. Introduction

The systematic study of random tilings arose from the insight that they may serve as models
for entropically stabilized quasicrystals [2, 3]. As such, they are an important and interesting
alternative to the perfect tilings based upon the projection method. Although random tilings
have been used intensively to study transport properties and dynamical properties of real
quasicrystals, not much effort has been expended on deducing random tiling properties from
general grounds [6,7]. We mention the two random tiling hypotheses stated by Henley in 1991,
which serve as a starting point to infer diffraction properties, using ideas of the Landau theory
of phase transitions. Recently, a more general approach was investigated [8,16,17], mainly for
two reasons. On the one hand, the concept of entropic stabilization applies also to crystalline
solids which therefore should be included in a more general description. On the other hand,
the quasicrystalline random tilings share a special feature which stems from the fact that these
tilings are derived from the perfect ones: they have a height representation—each tiling can be
embedded as a surface in a higher-dimensional space. Since tiling surfaces with equal (mean)
density of prototiles have equal (mean) slope, the slope parameters can be used to describe the
random tiling ensemble. This is the so-calledphason strainparametrization which governs
the conventional description.

This description has a number of shortcomings: first of all, it only allows the description
of those random tilings which do allow a height representation—being the vanishing (though
interesting) minority of all possible tilings. Second, symmetry analysis in this framework is
constrained togeometricsymmetries, whereas there may be other relevant symmetries of the
tiling ensemble. An example are colour symmetries modelling chemical disorder, which has
been shown to play an important role for real quasicrystals [9,10]. Third, it was expected that a
more general analysis could also clarify the origin of the random tiling hypotheses mentioned
above.

This was the viewpoint which led to the random tiling description proposed in [16].
There, the grand-canonical tiling ensemble was considered where prototiles are energetically
degenerate, and the chemical potentials of the different prototiles or their (mean) densities are
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Figure 1. Prototiles of the Ammann–Beenker random tiling.

the only macroscopic parameters. It was explained how to perform a symmetry analysis in this
framework. This led to a proof of a generalization of the first random tiling hypothesis which
asserts that the point of maximum entropy is a point of maximum symmetry. In addition, the
range of validity of the second hypothesis could be analysed using the grand-canonical setup,
and an exactly solved (crystallographic) counterexample could be given. A rigorous treatment
of diffraction is also possible using this setup [1].

The examples presented so far have been taken only from the crystallographic case. It
remains to apply the proposed description scheme to quasicrystallographic random tilings and
to show the consistency of the two approaches. That is the aim of this paper. Sections 2 and 3 are
devoted to the description of two important examples of quasicrystallographic random tilings:
the Ammann–Beenker tiling [14] and the square-triangle tiling [11,12,15,18]. We perform a
symmetry analysis along the lines of [16] and compare the approach with the conventional one,
thereby showing the consistency of the two approaches. In the appendix, we briefly review and
clarify the conventional description. We analyse the connection between maximal symmetry
and vanishing phason strain and derive a group theoretic criterion. If the criterion is valid—
which is the case in all examples we met—the first random tiling hypothesis is fulfilled in its
original formulation: the point of maximum entropy is a point of maximum symmetry [16],
and maximum symmetry in turn implies vanishing phason strain. A comparison of the two
approaches concludes the paper.

2. The Ammann–Beenker random tiling

The prototiles of the Ammann–Beenker random tiling are two squares and four 45◦-rhombi
as shown in figure 1. There is no further matching rule apart from the face-to-face tiling
condition, which imposes the relation

∑
ρi +

∑
σi = 1 on the prototile densities. Tilings can

alternatively be viewed as world lines of particles of two different kinds, as is indicated by
the decoration. It was shown in [14] that there is a nonlinear constraint among the different
prototile densities which reduces the number of independent variables to four. This constraint
was obtained using the height representation of this model, which is given below. It should be
noted that it can be independently derived relating the tile description to the line interpretation.
This method was introduced in [5]. The constraint reads

ρ1ρ2 = 2(σ1σ3 + σ2σ4). (1)

The derivation imposes periodic boundary conditions. It is highly plausible that the constraint
also holds (asymptotically) in the case of free boundary conditions, though there is no proof
of this assumption. Complementarily, the line representation suggests four independent
parameters since it is possible to fix the densities of different lines as well as their mean
direction independently. Moreover, care has to be taken in choosing a set of independent
parameters: the four rhombi densities, for example, allow the determination of the square
densities only up to a permutation, due to the nonlinear constraint. This subtlety does not
arise if, for example, three rhombi densities and one square density are chosen. The quadratic
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invariants given below are insensitive to this because only absolute values of square density
differences occur.

At the point of maximum symmetry, the four rhombi densities and the two square densities
have the same value. The nonlinear constraint fixes them to

ρi = 1
4 σi = 1

8. (2)

This is the point where the squares and the rhombi each occupy half of the tiled area. We
determine the second-order expansion of the entropy density according toD8-symmetry. We
introduce reduced prototile densities

ri = ρi − 1
4 si = σi − 1

8 (3)

such that the point of maximum symmetry is the origin. The vector space relevant for the
symmetry analysis is obtained throughlinearizationof the constraints. It is four-dimensional
and determined by

r1 + r2 = 0 s1 + s2 + s3 + s4 = 0. (4)

The analysis of the symmetries in the vector space of the independent, reduced prototile
densities leads to a second-order entropy expansion of the form

s(r, s) = s0 − 1
2

∑
i

λiI
(i)(r, s) + · · · . (5)

There are three (positive) elastic constantsλi with invariants

I (1)(r, s) = 2r2
1

I (2)(r, s) = (s1 + s3)
2

I (3)(r, s) = 1
2(s1− s3)2 + 1

2(s1 + 2s2 + s3)
2.

(6)

The elastic constants are obtained as expansion coefficients of the Hessian of the entropy in
terms of projectors onto the irreducible subspaces of the symmetry group [16]. We now derive
the relation to the elastic constants defined from the height representation approach. This is
done by expressing expansion (5) in terms of the slope parameters of the height representation.
The positions of tiling vertices belong, viewed as complex numbers, to the moduleZ[ξ ] with
ξ = e2π i/8. We characterize the height function algebraically. To this end, we recall some facts
concerning the associated cyclotomic field [13].ξ is a root of the eighth cyclotomic polynomial
P8(x) = x4 + 1. The other roots areξ3, ξ5 = −ξ andξ7 = ξ̄ . The automorphism group on
this set of primitive roots of unity is the Galois groupG ' C2×C2. The automorphisms can be
uniquely extended to automorphisms of the corresponding module. The usual height function
h on the set of possible vertex positions is defined by

h(α) = σ(α) (7)

with α ∈ Z[ξ ], G 3 σ : ξ 7→ ξ5. The set of all embedded vertex positions constitutes
the four-dimensional primitive hypercubic latticeZ4, and each tiling corresponds to a two-
dimensional surface. This is the geometric origin of the height representation. It is possible
to define a height function on the prototiles by linear extrapolation of the height function on
the corresponding vertices. The new macroscopic parameters to describe the tiling ensemble
are the components of thephason strain tensor

E =
(
E1,1 E1,2

E2,1 E2,2

)
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Figure 2. Prototiles of the square–triangle random tiling.

in Cartesian coordinates. The phason strain is defined as the (mean) slope of the height function.
This leads to the relations

E1,1 = ρ1− ρ2 + (σ1 + σ2)− (σ3 + σ4)

E2,2 = ρ1− ρ2 − (σ1 + σ2) + (σ3 + σ4)

E1,2 = 2(σ4 − σ3)

E2,1 = 2(σ1− σ2).

(8)

We observeE = 0 at the point of maximal symmetry, which already follows from group
theoretical considerations given in the appendix. In order to write the entropy expansion (5)
in terms of the phason strain, the relation between phason strain and independent tile densities
has to be invertible at the point of maximum symmetry. This is not the case if the four rhombi
are taken as parameters. If three rhombi densities and one square density are taken instead,
relation (8) is invertible in the whole phase space. This leads to an expansion

s(E) = s0 − 1
2K1(E1,1 +E2,2)

2 − 1
2K2(E1,2 − E2,1)

2

− 1
2K3((E1,1− E2,2)

2 + (E1,2 +E2,1)
2) + · · · (9)

which is the form appearing in the literature [14]. We find

λ1 = 8K1 > 0 λ2 = 16K2 > 0 λ3 = 16K3 > 0. (10)

3. The square–triangle random tiling

The prototiles of this tiling are three squares and four equilateral triangles as shown in figure 2.
We treat the model similarly to the example above, stressing important differences. The only
matching rule is the face-to-face tiling condition, imposing the relation

∑
ρi +

∑
σi = 1 on the

prototile densities. Triangles always occur in pairs, which is evident from the line decoration
indicated in figure 2. This implies the relationsρ1 = ρ3 andρ2 = ρ4 between the prototile
densities. The nonlinear constraint [4]

16ρ1ρ2 = 3(σ1σ2 + σ2σ3 + σ3σ1) (11)

reduces the number of independent variables to three. This constraint, derived under the
assumption of periodic boundary conditions, is believed to hold asymptotically in the case
of free boundary conditions as well. This is supported by the observation that the line
representation allows three independent parameters: the densities of the lines of different
type and the frequency of one type of crossing. A set of independent parameters is given by
two square densities and one triangle density. In order to derive the entropy expansion, we
introduce reduced prototile densities

ri = ρi − 1
8 si = σi − 1

6. (12)

Symmetry analysis with respect to the groupD12 is done in the three-dimensional vector space
given by the relations

r1 + r2 = 0 s1 + s2 + s3 = 0. (13)
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Expansion (5) yields two elastic constantsλi with invariants

I (r)(r, s) = 2r2
1

I (s)(r, s) = 2(s2
1 + s1s2 + s2

2).
(14)

Tiling vertices can be regarded as elements of the moduleZ[ξ ] with ξ = e2π i/12. The
usual height function is defined using the transformationσ : ξ 7→ ξ7, which is a Galois
automorphism on the set of primitive roots of unity of the 12th cyclotomic polynomial
P12(x) = x4 − x2 + 1 [13]. The coefficients of the phason strain tensor are

E1,1 = σ1− 1
2(σ2 + σ3) + (ρ1 + ρ3)− (ρ2 + ρ4)

E2,2 = −σ1 + 1
2(σ2 + σ3) + (ρ1 + ρ3)− (ρ2 + ρ4)

E1,2 = E2,1 =
√

3
2 (σ3− σ2).

(15)

Since the model has three degrees of freedom, we expect a special property of the height
function, reducing the number of independent slope parameters. This is theirrotationality
property Re(

∮
h(z) dz̄) = 0 [15]. As a consequence, the off-diagonal elements of the phason

strain tensor are equal. With the choice of independent parameters as above, (15) is invertible†.
We arrive at the common expansion [15]

s(E) = s0 − 1
2Kµ(tr(E))

2 + 1
2Kξ det(E) + · · · . (16)

The relation between the elastic constants is

λs = 3
2Kξ > 0 λr = 8(4Kµ −Kξ) > 0. (17)

4. Conclusion

We have performed a symmetry analysis of well known planar quasicrystalline random tilings
using the prototile density approach. We were able to show the consistency to the conventional
approach via the height representation of these models. For the square–triangle tiling, the
approach illuminated the irrotationality property whose appearance was rather unexpected
before. Whereas it seems to be natural to describe random tilings using the prototile densities
as macroscopic parameters, the approach is commonly hard to follow because it requires the
knowledge of all (possibly nonlinear) constraints in order not to overestimate the number of
elastic constants. The height representation, in turn, has the disadvantage that it is not obvious
whether the slope parameters are independent and whether they constitute a sufficient set to
describe all degrees of freedom of the ensemble. Furthermore, to describe other than geometric
symmetries, one has to derive the relation between phason strain and the prototile densities
explicitly. Therefore, the two approaches are in fact complementary in deriving properties
of random tilings. The exactly solved eightfold random tiling, for example, must possess a
constraint additional to the ones derived in [5], since the height representation and the density
description yield different numbers of elastic constants otherwise, as can be shown. Research
in this direction is in progress.
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Appendix: Symmetry and phason strain

We briefly deal with the symmetry analysis of random tilings which permit a height
representation, in the framework of our viewpoint expressed elsewhere [16]. In particular,
this will lead to a criterion for the validity of the first random tiling hypothesis [7] which states
that the point of maximum entropy occurs at vanishing phason strain.

Let a random tiling ensemble of thed||-dimensional vector spaceV|| be given. A height
representation assigns to each tiling ad||-dimensional surface in a higher-dimensional vector
spaceV = V‖ ⊕ V⊥ with the property that surfaces of tilings with equal prototile (mean)
density have the same (mean) slope inV . In this situation, the (mean) surface slope can
be used to parametrize the grand-canonical tiling ensemble. We discuss the influence of
geometric symmetries on this description. The (mean) tiling slope can be represented by
a linear mapE : V‖ → V⊥, usually calledphason strain. Symmetries are bijections on
the (mean) prototile densities which leave the entropy density invariant. LetD‖ denote the
representation of the geometric symmetries in the physical spaceV‖. The height representation
induces a representationD⊥ of the geometric symmetries in the internal spaceV⊥. The phason
strain tensor transforms under geometric symmetries according to

Ẽ = D⊥ED−1
|| . (18)

We now focus on the point of maximum symmetry.E is invariant at this point, since this
is by definition true of the (mean) prototile densities, which determineE uniquely. If the
representationsD|| andD⊥ are irreducible and not equivalent, Schur’s lemma yieldsE = 0.
In the general case we have

• The phason strain tensor vanishes at maximal symmetry if no irrep in internal space is
equivalent to an irrep in physical space.

If this criterion is fulfilled, the first random tiling hypothesis in the formulation of Henley is
satisfied since the point of maximum entropy is always a point of maximum symmetry, as
shown in [16]. On the other hand, the criterion is fulfilled in all situations we met due to the
special construction of the height function.

Symmetry analysis may alternatively be performed in the tensor productV‖ ⊗ V⊥, which
is most advantageous when discussing the influence of symmetries on the entropy density.
In this case,E is regarded as a vector with components of the matrixE : V‖ → V⊥. The
geometric symmetries are represented via

Ẽ = D · E = ((D−1
‖ )

t ⊗D⊥) · E. (19)

Since the point of maximum symmetry is by definition a fixed point, we conclude:

• The phason strain at the point of maximum symmetry consists of components in direction
to the trivial one-dimensional irreps of the representation inV‖ ⊗ V⊥.
• In particular, the phason strain vanishes at maximal symmetry, if the representation in
V‖ ⊗ V⊥ does not contain trivial parts.

This criterion is equivalent to the statement given above, as follows from a closer look at the
Clebsch–Gordan decomposition of the product representation. The second-order expansion of
the entropy density is obtained by expanding the Hessian of the entropy in terms of projectors
onto the irreducible subspaces of the symmetry group [16,17].
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